Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
J Med Virol ; 95(5): e28806, 2023 05.
Article in English | MEDLINE | ID: covidwho-2327389

ABSTRACT

Intranasal (i.n.) vaccines can induce mucosal and systemic immunity against respiratory pathogens. Previously, we demonstrated that the recombinant vesicular stomatitis virus (rVSV)-based COVID-19 vaccine rVSV-SARS-CoV-2, with poor immunogenicity via the intramuscular route (i.m.), is more suitable for i.n. administration in mice and nonhuman primates. Here, we found that the rVSV-SARS-CoV-2 Beta variant was more immunogenic than the wild-type strain and other variants of concern (VOCs) in golden Syrian hamsters. Furthermore, the immune responses elicited by rVSV-based vaccine candidates via the i.n. route were significantly higher than those of two licensed vaccines: the inactivated vaccine KCONVAC delivered via the i.m. route and the adenovirus-based Vaxzevria delivered i.n. or i.m. We next assessed the booster efficacy of rVSV following two i.m. doses of KCONVAC. Twenty-eight days after receiving two i.m. doses of KCONVAC, hamsters were boosted with a third dose of KCONVAC (i.m.), Vaxzevria (i.m. or i.n.), or rVSVs (i.n.). Consistent with other heterologous booster studies, Vaxzevria and rVSV elicited significantly higher humoral immunity than the homogenous KCONVAC. In summary, our results confirmed that two i.n. doses of rVSV-Beta elicited significantly higher humoral immune responses than commercial inactivated and adeno-based COVID vaccines in hamsters. As a heterologous booster dose, rVSV-Beta induced potent, persistent, and broad-spectrum humoral and mucosal neutralizing responses against all VOCs, highlighting its potential to be developed into a nasal-spray vaccine.


Subject(s)
COVID-19 , Viral Vaccines , Humans , Animals , Mice , COVID-19 Vaccines , Rodentia , Nasal Sprays , ChAdOx1 nCoV-19 , COVID-19/prevention & control , SARS-CoV-2/genetics , Vesiculovirus , Antibodies, Viral , Antibodies, Neutralizing
2.
J Biol Chem ; 299(6): 104749, 2023 06.
Article in English | MEDLINE | ID: covidwho-2292505

ABSTRACT

The recent SARS-CoV-2 and mpox outbreaks have highlighted the need to expand our arsenal of broad-spectrum antiviral agents for future pandemic preparedness. Host-directed antivirals are an important tool to accomplish this as they typically offer protection against a broader range of viruses than direct-acting antivirals and have a lower susceptibility to viral mutations that cause drug resistance. In this study, we investigate the exchange protein activated by cAMP (EPAC) as a target for broad-spectrum antiviral therapy. We find that the EPAC-selective inhibitor, ESI-09, provides robust protection against a variety of viruses, including SARS-CoV-2 and Vaccinia (VACV)-an orthopox virus from the same family as mpox. We show, using a series of immunofluorescence experiments, that ESI-09 remodels the actin cytoskeleton through Rac1/Cdc42 GTPases and the Arp2/3 complex, impairing internalization of viruses that use clathrin-mediated endocytosis (e.g. VSV) or micropinocytosis (e.g. VACV). Additionally, we find that ESI-09 disrupts syncytia formation and inhibits cell-to-cell transmission of viruses such as measles and VACV. When administered to immune-deficient mice in an intranasal challenge model, ESI-09 protects mice from lethal doses of VACV and prevents formation of pox lesions. Altogether, our finding shows that EPAC antagonists such as ESI-09 are promising candidates for broad-spectrum antiviral therapy that can aid in the fight against ongoing and future viral outbreaks.


Subject(s)
Antiviral Agents , COVID-19 , Monkeypox , Vaccinia , Animals , Mice , Antiviral Agents/pharmacology , Monkeypox/drug therapy , SARS-CoV-2/drug effects , Vaccinia/drug therapy , Vaccinia virus/drug effects
3.
Front Immunol ; 14: 1082191, 2023.
Article in English | MEDLINE | ID: covidwho-2249096

ABSTRACT

Despite recent advances in the research on oncolytic viruses (OVs), a better understanding of how to enhance their replication is key to improving their therapeutic index. Understanding viral replication is important to improve treatment outcomes based on enhanced viral spreading within the tumor milieu. The VSV-Δ51 oncolytic virus has been widely used as an anticancer agent with a high selectivity profile. In this study, we examined the role of the SARS-CoV-2 spike protein receptor-binding domain (RBD) in enhancing VSV-Δ51 viral production and oncolytic activity. To test this hypothesis, we first generated a novel VSV-Δ51 mutant that encoded the SARS-COV-2 RBD and compared viral spreading and viral yield between VSV-Δ51-RBD and VSV-Δ51 in vitro. Using the viral plaque assay, we demonstrated that the presence of the SARS-CoV-2 RBD in the VSV-Δ51 genome is associated with a significantly larger viral plaque surface area and significantly higher virus titers. Subsequently, using an ATP release-based assay, we demonstrated that the SARS-CoV-2 RBD could enhance VSV-Δ51 oncolytic activity in vitro. This observation was further supported using the B16F10 tumor model. These findings highlighted a novel use of the SARS-CoV-2 RBD as an anticancer agent.


Subject(s)
COVID-19 , Oncolytic Virotherapy , Oncolytic Viruses , Vesicular Stomatitis , Animals , Humans , SARS-CoV-2 , Carrier Proteins/metabolism , Cell Line, Tumor , COVID-19/therapy , Vesicular stomatitis Indiana virus/genetics , Oncolytic Viruses/genetics
4.
mBio ; : e0337921, 2022 Jan 11.
Article in English | MEDLINE | ID: covidwho-2259785

ABSTRACT

The ongoing pandemic of coronavirus (CoV) disease 2019 (COVID-19) continues to exert a significant burden on health care systems worldwide. With limited treatments available, vaccination remains an effective strategy to counter transmission of severe acute respiratory syndrome CoV 2 (SARS-CoV-2). Recent discussions concerning vaccination strategies have focused on identifying vaccine platforms, number of doses, route of administration, and time to reach peak immunity against SARS-CoV-2. Here, we generated a single-dose, fast-acting vesicular stomatitis virus (VSV)-based vaccine derived from the licensed Ebola virus (EBOV) vaccine rVSV-ZEBOV, expressing the SARS-CoV-2 spike protein and the EBOV glycoprotein (VSV-SARS2-EBOV). Rhesus macaques vaccinated intramuscularly (i.m.) with a single dose of VSV-SARS2-EBOV were protected within 10 days and did not show signs of COVID-19 pneumonia. In contrast, intranasal (i.n.) vaccination resulted in limited immunogenicity and enhanced COVID-19 pneumonia compared to results for control animals. While both i.m. and i.n. vaccination induced neutralizing antibody titers, only i.m. vaccination resulted in a significant cellular immune response. RNA sequencing data bolstered these results by revealing robust activation of the innate and adaptive immune transcriptional signatures in the lungs of i.m. vaccinated animals only. Overall, the data demonstrate that VSV-SARS2-EBOV is a potent single-dose COVID-19 vaccine candidate that offers rapid protection based on the protective efficacy observed in our study. IMPORTANCE The vesicular stomatitis virus (VSV) vaccine platform rose to fame in 2019, when a VSV-based Ebola virus (EBOV) vaccine was approved by the European Medicines Agency and the U.S. Food and Drug Administration for human use against the deadly disease. Here, we demonstrate the protective efficacy of a VSV-EBOV-based COVID-19 vaccine against challenge in nonhuman primates (NHPs). When a single dose of the VSV-SARS2-EBOV vaccine was administered intramuscularly (i.m.), the NHPs were protected from COVID-19 within 10 days. In contrast, if the vaccine was administered intranasally, there was no benefit from the vaccine and the NHPs developed pneumonia. The i.m. vaccinated NHPs quickly developed antigen-specific IgG, including neutralizing antibodies. Transcriptional analysis highlighted the development of protective innate and adaptive immune responses in the i.m. vaccination group only.

5.
Biotechnol Rep (Amst) ; 37: e00782, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2176932

ABSTRACT

The outbreak of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes the Coronavirus Disease 2019 (COVID-19) has spread through the globe at an alarming speed. The disease has become a global pandemic affecting millions of people and created public health crises worldwide. Among many efforts to urgently develop a vaccine against this disease, we developed an industrial-scale closed, single use manufacturing process for V590, a vaccine candidate for SARS-CoV-2. V590 is a recombinant vesicular stomatitis virus (rVSV) genetically engineered to express SARS-CoV-2 glycoprotein. In this work, we describe the development and optimization of serum-free microcarrier production of V590 in Vero cells in a closed system. To achieve the maximum virus productivity, we optimized pH and temperature during virus production in 3 liters (L) bioreactors. Virus productivity was improved (by ∼1 log) by using pH 7.0 and temperature at 34.0 °C. The optimal production condition was successfully scaled up to a 2000 L Single Use Bioreactor (SUB), producing a maximum virus titer of ∼1.0e+7 plaque forming units (PFU)/mL. Further process intensification and simplification, including growing Vero cells at 2 gs per liter (g/L) of Cytodex-1 Gamma microcarriers and eliminating the media exchange (MX) step prior to infection helped to increase virus productivity by ∼2-fold.

6.
Front Immunol ; 13: 919815, 2022.
Article in English | MEDLINE | ID: covidwho-2080131

ABSTRACT

Since first reported in 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is rapidly acquiring mutations, particularly in the spike protein, that can modulate pathogenicity, transmission and antibody evasion leading to successive waves of COVID19 infections despite an unprecedented mass vaccination necessitating continuous adaptation of therapeutics. Small animal models can facilitate understanding host-pathogen interactions, target selection for therapeutic drugs, and vaccine development, but availability and cost of studies in BSL3 facilities hinder progress. To generate a BSL2-compatible in vivo system that specifically recapitulates spike protein mediated disease we used replication competent, GFP tagged, recombinant Vesicular Stomatitis Virus where the VSV glycoprotein was replaced by the SARS-CoV-2 spike protein (rVSV-SARS2-S). We show that infection requires hACE2 and challenge of neonatal but not adult, K18-hACE2 transgenic mice (hACE2tg) leads to productive infection of the lungs and brains. Although disease progression was faster in SARS-CoV-2 infected mice, infection with both viruses resulted in neuronal infection and encephalitis with increased expression of Interferon-stimulated Irf7, Bst2, Ifi294, as well as CxCL10, CCL5, CLC2, and LILRB4, and both models were uniformly lethal. Further, prophylactic treatment targeting the Spike protein (Receptor Binding Domain) with antibodies resulted in similar levels of protection from lethal infection against rVSV-SARS2-S and SARS-CoV-2 viruses. Strikingly, challenge of neonatal hACE2tg mice with SARS-CoV-2 Variants of Concern (SARS-CoV-2-α, -ß, ϒ, or Δ) or the corresponding rVSV-SARS2-S viruses (rVSV-SARS2-Spike-α, rVSV-SARS2-Spike-ß, rVSV-SARS2-Spike-ϒ or rVSV-SARS2-Spike-Δ) resulted in increased lethality, suggesting that the Spike protein plays a key role in determining the virulence of each variant. Thus, we propose that rVSV-SARS2-S virus can be used to understand the effect of changes to SARS-CoV-2 spike protein on infection and to evaluate existing or experimental therapeutics targeting spike protein of current or future VOC of SARS-CoV-2 under BSL-2 conditions.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Disease Models, Animal , Humans , Membrane Glycoproteins/metabolism , Mice , Receptors, Immunologic , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics
7.
Viruses ; 14(9)2022 09 13.
Article in English | MEDLINE | ID: covidwho-2033144

ABSTRACT

Mammalian seminal plasma contains a multitude of bioactive components, including lipids, glucose, mineral elements, metabolites, proteins, cytokines, and growth factors, with various functions during insemination and fertilization. The seminal plasma protein PDC-109 is one of the major soluble components of the bovine ejaculate and is crucially important for sperm motility, capacitation, and acrosome reaction. A hitherto underappreciated function of seminal plasma is its anti-microbial and antiviral activity, which may limit the sexual transmission of infectious diseases during intercourse. We have recently discovered that PDC-109 inhibits the membrane fusion activity of influenza virus particles and significantly impairs viral infections at micromolar concentrations. Here we investigated whether the antiviral activity of PDC-109 is restricted to Influenza or if other mammalian viruses are similarly affected. We focused on Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), the etiological agent of the Coronavirus Disease 19 (COVID-19), thoroughly assessing PDC-109 inhibition with SARS-CoV-2 Spike (S)-pseudotyped reporter virus particles, but also live-virus infections. Consistent with our previous publications, we found significant virus inhibition, albeit accompanied by substantial cytotoxicity. However, using time-of-addition experiments we discovered a treatment regimen that enables virus suppression without affecting cell viability. We furthermore demonstrated that PDC-109 is also able to impair infections mediated by the VSV glycoprotein (VSVg), thus indicating a broad pan-antiviral activity against multiple virus species and families.


Subject(s)
COVID-19 , Semen , Animals , Antiviral Agents/pharmacology , Cattle , Cytokines , Glucose , Humans , Lipids , Male , Mammals , SARS-CoV-2 , Semen/metabolism , Seminal Plasma Proteins , Sperm Motility , Spike Glycoprotein, Coronavirus/metabolism
8.
J Virol ; 96(18): e0133722, 2022 09 28.
Article in English | MEDLINE | ID: covidwho-2019728

ABSTRACT

COVID-19 and influenza are both highly contagious respiratory diseases that have been serious threats to global public health. It is necessary to develop a bivalent vaccine to control these two infectious diseases simultaneously. In this study, we generated three attenuated replicating recombinant vesicular stomatitis virus (rVSV)-based vaccine candidates against both SARS-CoV-2 and influenza viruses. These rVSV-based vaccines coexpress SARS-CoV-2 Delta spike protein (SP) bearing the C-terminal 17 amino acid (aa) deletion (SPΔC) and I742A point mutation, or the SPΔC with a deletion of S2 domain, or the RBD domain, and a tandem repeat harboring four copies of the highly conserved influenza M2 ectodomain (M2e) that fused with the Ebola glycoprotein DC-targeting/activation domain. Animal immunization studies have shown that these rVSV bivalent vaccines induced efficient humoral and cellular immune responses against both SARS-CoV-2 SP and influenza M2 protein, including high levels of neutralizing antibodies against SARS-CoV-2 Delta and other variant SP-pseudovirus infections. Importantly, immunization of the rVSV bivalent vaccines effectively protected hamsters or mice against the challenges of SARS-CoV-2 Delta variant and lethal H1N1 and H3N2 influenza viruses and significantly reduced respiratory viral loads. Overall, this study provides convincing evidence for the high efficacy of this bivalent vaccine platform to be used and/or easily adapted to produce new vaccines against new or reemerging SARS-CoV-2 variants and influenza A virus infections. IMPORTANCE Given that both COVID-19 and influenza are preferably transmitted through respiratory droplets during the same seasons, it is highly advantageous to develop a bivalent vaccine that could simultaneously protect against both COVID-19 and influenza. In this study, we generated the attenuated replicating recombinant vesicular stomatitis virus (rVSV)-based vaccine candidates that target both spike protein of SARS-Cov-2 Delta variant and the conserved influenza M2 domain. Importantly, these vaccine candidates effectively protected hamsters or mice against the challenges of SARS-CoV-2 Delta variant and lethal H1N1 and H3N2 influenza viruses and significantly reduced respiratory viral loads.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Vaccines, Combined , Vesicular Stomatitis , Amino Acids/genetics , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Cricetinae , Glycoproteins/genetics , Glycoproteins/immunology , Humans , Influenza A Virus, H3N2 Subtype , Influenza Vaccines/genetics , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Mice , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Combined/immunology , Vaccines, Synthetic/genetics , Vesiculovirus/immunology
9.
Int J Mol Sci ; 23(17)2022 Aug 26.
Article in English | MEDLINE | ID: covidwho-2006040

ABSTRACT

Type III and type I interferon have similar mechanisms of action, and their different receptors lead to different distributions in tissue. On mucosal surfaces, type III interferon exhibits strong antiviral activity. Porcine epidemic diarrhea virus (PEDV) is an economically important enteropathogenic coronavirus, which can cause a high incidence rate and mortality in piglets. Here, we demonstrate that porcine interferon lambda 1 (pIFNL1) and porcine interferon lambda 3 (pIFNL3) can inhibit the proliferation of vesicular stomatitis virus with an enhanced green fluorescent protein (VSV-EGFP) in different cells, and also show strong antiviral activity when PEDV infects Vero cells. Both forms of pIFNLs were shown to be better than porcine interferon alpha (pIFNα), the antiviral activity of pIFNL1 is lower than that of pIFNL3. Therefore, our results provide experimental evidence for the inhibition of PEDV infection by pIFNLs, which may provide a promising treatment for the prevention and treatment of Porcine epidemic diarrhea (PED) in piglets.


Subject(s)
Interferon Type I , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Chlorocebus aethiops , Interferon Type I/metabolism , Porcine epidemic diarrhea virus/physiology , Swine , Vero Cells
10.
EBioMedicine ; 82: 104203, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1966508

ABSTRACT

BACKGROUND: To investigate a vaccine technology with potential to protect against coronavirus disease 2019 (COVID-19) and reduce transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with a single vaccine dose, we developed a SARS-CoV-2 candidate vaccine using the live vesicular stomatitis virus (VSV) chimeric virus approach previously used to develop a licensed Ebola virus vaccine. METHODS: We generated a replication-competent chimeric VSV-SARS-CoV-2 vaccine candidate by replacing the VSV glycoprotein (G) gene with coding sequence for the SARS-CoV-2 Spike glycoprotein (S). Immunogenicity of the lead vaccine candidate (VSV∆G-SARS-CoV-2) was evaluated in cotton rats and golden Syrian hamsters, and protection from SARS-CoV-2 infection also was assessed in hamsters. FINDINGS: VSV∆G-SARS-CoV-2 delivered with a single intramuscular (IM) injection was immunogenic in cotton rats and hamsters and protected hamsters from weight loss following SARS-CoV-2 challenge. When mucosal vaccination was evaluated, cotton rats did not respond to the vaccine, whereas mucosal administration of VSV∆G-SARS-CoV-2 was found to be more immunogenic than IM injection in hamsters and induced immunity that significantly reduced SARS-CoV-2 challenge virus loads in both lung and nasal tissues. INTERPRETATION: VSV∆G-SARS-CoV-2 delivered by IM injection or mucosal administration was immunogenic in golden Syrian hamsters, and both vaccination methods effectively protected the lung from SARS-CoV-2 infection. Hamsters vaccinated by mucosal application of VSV∆G-SARS-CoV-2 also developed immunity that controlled SARS-CoV-2 replication in nasal tissue. FUNDING: The study was funded by Merck Sharp & Dohme, Corp., a subsidiary of Merck & Co., Inc., Rahway, NJ, USA, and The International AIDS Vaccine Initiative, Inc. (IAVI), New York, USA. Parts of this research was supported by the Biomedical Advanced Research and Development Authority (BARDA) and the Defense Threat Reduction Agency (DTRA) of the US Department of Defense.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Cricetinae , Humans , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Mesocricetus , SARS-CoV-2 , Vesicular stomatitis Indiana virus/genetics , Immunogenicity, Vaccine
11.
EBioMedicine ; 82: 104138, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1914312

ABSTRACT

BACKGROUND: Vaccines against COVID-19 are needed to overcome challenges associated with mitigating the global pandemic. We report the safety and immunogenicity of V590, a live recombinant vesicular stomatitis virus-based COVID-19 vaccine candidate. METHODS: In this placebo-controlled, double-blind, three-part phase 1 study, healthy adults were randomised to receive a single intramuscular dose of vaccine or placebo. In Part 1, younger (18-54 years) and, in Part 2, older (≥55 years) adults seronegative for SARS-CoV-2 nucleocapsid received one of four V590 dose levels (5.00 × 105; 2.40 × 106; 1.15 × 107; or 5.55 × 107 plaque-forming units [pfu]) or placebo. In Part 3, a single V590 dose level (5.55 × 107 pfu) or placebo was administered to younger SARS-CoV-2 seropositive adults. Primary endpoints included adverse events (AEs) and for Parts 1 and 2 anti-SARS-CoV-2 serum neutralising antibody responses measured by 50% plaque reduction neutralisation (PRNT50) assay at Day 28. Registration NCT04569786 [P001-02]. FINDINGS: 232 participants were randomised and 219 completed the study. In seronegative participants, anti-SARS-CoV-2 spike-specific antibody responses to V590 were low and comparable to placebo across the lower dose levels. At the highest dose level (5.55 × 107 pfu), anti-SARS-CoV-2 spike-specific PRNT50 was 2.3-fold higher than placebo. The most frequently reported AEs were injection-site pain (38.4%), headache (15.1%) and fatigue (13.4%). INTERPRETATION: V590 was generally well-tolerated. However, Day 28 anti-SARS-Cov-2 spike-specific antibody responses in seronegative participants following a single intramuscular administration of V590 were not sufficient to warrant continued development. FUNDING: The study was funded by Merck Sharp & Dohme LLC., a subsidiary of Merck & Co., Inc., Rahway, NJ, USA.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Double-Blind Method , Humans , Pandemics/prevention & control , SARS-CoV-2 , Vaccines
12.
Cell Struct Funct ; 47(1): 43-53, 2022 Jun 25.
Article in English | MEDLINE | ID: covidwho-1910415

ABSTRACT

The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has threatened human health and the global economy. Development of additional vaccines and therapeutics is urgently required, but such development with live virus must be conducted with biosafety level 3 confinement. Pseudotyped viruses have been widely adopted for studies of virus entry and pharmaceutical development to overcome this restriction. Here we describe a modified protocol to generate vesicular stomatitis virus (VSV) pseudotyped with SARS-CoV or SARS-CoV-2 spike protein in high yield. We found that a large proportion of pseudovirions produced with the conventional transient expression system lacked coronavirus spike protein at their surface as a result of inhibition of parental VSV infection by overexpression of this protein. Establishment of stable cell lines with an optimal expression level of coronavirus spike protein allowed the efficient production of progeny pseudoviruses decorated with spike protein. This improved VSV pseudovirus production method should facilitate studies of coronavirus entry and development of antiviral agents.Key words: severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-2, pseudovirus, vesicular stomatitis virus (VSV), spike protein.


Subject(s)
Spike Glycoprotein, Coronavirus , Vesicular stomatitis Indiana virus , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/biosynthesis , Vesicular stomatitis Indiana virus/metabolism
13.
Front Immunol ; 13: 872047, 2022.
Article in English | MEDLINE | ID: covidwho-1855361

ABSTRACT

An effective COVID-19 vaccine against broad SARS-CoV-2 variants is still an unmet need. In the study, the vesicular stomatitis virus (VSV)-based vector was used to express the SARS-CoV-2 Spike protein to identify better vaccine designs. The replication-competent of the recombinant VSV-spike virus with C-terminal 19 amino acid truncation (SΔ19 Rep) was generated. A single dose of SΔ19 Rep intranasal vaccination is sufficient to induce protective immunity against SARS-CoV-2 infection in hamsters. All the clones isolated from the SΔ19 Rep virus contained R682G mutation located at the Furin cleavage site. An additional S813Y mutation close to the TMPRSS2 cleavage site was identified in some clones. The enzymatic processing of S protein was blocked by these mutations. The vaccination of the R682G-S813Y virus produced a high antibody response against S protein and a robust S protein-specific CD8+ T cell response. The vaccinated animals were protected from the lethal SARS-CoV-2 (delta variant) challenge. The S antigen with resistance to enzymatic processes by Furin and TMPRSS2 will provide better immunogenicity for vaccine design.


Subject(s)
COVID-19 , Furin , SARS-CoV-2 , Serine Endopeptidases , Animals , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines , Furin/genetics , Furin/metabolism , Humans , Immunity, Cellular , SARS-CoV-2/immunology , Serine Endopeptidases/genetics , Serine Endopeptidases/immunology , Spike Glycoprotein, Coronavirus/immunology
14.
Biotechnol Bioeng ; 119(7): 1839-1848, 2022 07.
Article in English | MEDLINE | ID: covidwho-1825883

ABSTRACT

To face the coronavirus disease 2019 pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, our institute has developed the rVSV-ΔG-spike vaccine, in which the glycoprotein of vesicular stomatitis virus (VSV) was replaced by the spike protein of SARS-CoV-2. Many process parameters can influence production yield. To maximize virus vaccine yield, each parameter should be tested independently and in combination with others. Here, we report the optimization of the production of the VSV-ΔG-spike vaccine in Vero cells using the Ambr15 system. This system facilitates high-throughput screening of process parameters, as it contains 24 individually controlled, single-use stirred-tank minireactors. During optimization, critical parameters were tested. Those parameters included: cell densities; the multiplicity of infection; virus production temperature; medium addition and medium exchange; and supplementation of glucose in the virus production step. Virus production temperature, medium addition, and medium exchange were all found to significantly influence the yield. The optimized parameters were tested in the BioBLU 5p bioreactors production process and those that were found to contribute to the vaccine yield were integrated into the final process. The findings of this study demonstrate that an Ambr15 system is an effective tool for bioprocess optimization of vaccine production using macrocarriers and that the combination of production temperature, rate of medium addition, and medium exchange significantly improved virus yield.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Chlorocebus aethiops , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vero Cells
15.
Trends Food Sci Technol ; 104: 219-234, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-1791132

ABSTRACT

BACKGROUND: Garlic (Allium sativum L.) is a common herb consumed worldwide as functional food and traditional remedy for the prevention of infectious diseases since ancient time. Garlic and its active organosulfur compounds (OSCs) have been reported to alleviate a number of viral infections in pre-clinical and clinical investigations. However, so far no systematic review on its antiviral effects and the underlying molecular mechanisms exists. SCOPE AND APPROACH: The aim of this review is to systematically summarize pre-clinical and clinical investigations on antiviral effects of garlic and its OSCs as well as to further analyse recent findings on the mechanisms that underpin these antiviral actions. PubMed, Cochrane library, Google Scholar and Science Direct databases were searched and articles up to June 2020 were included in this review. KEY FINDINGS AND CONCLUSIONS: Pre-clinical data demonstrated that garlic and its OSCs have potential antiviral activity against different human, animal and plant pathogenic viruses through blocking viral entry into host cells, inhibiting viral RNA polymerase, reverse transcriptase, DNA synthesis and immediate-early gene 1(IEG1) transcription, as well as through downregulating the extracellular-signal-regulated kinase (ERK)/mitogen activated protein kinase (MAPK) signaling pathway. The alleviation of viral infection was also shown to link with immunomodulatory effects of garlic and its OSCs. Clinical studies further demonstrated a prophylactic effect of garlic in the prevention of widespread viral infections in humans through enhancing the immune response. This review highlights that garlic possesses significant antiviral activity and can be used prophylactically in the prevention of viral infections.

16.
Vaccine ; 40(15): 2342-2351, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1740250

ABSTRACT

An orally active vaccine capable of boosting SARS-CoV-2 immune responses in previously infected or vaccinated individuals would help efforts to achieve and sustain herd immunity. Unlike mRNA-loaded lipid nanoparticles and recombinant replication-defective adenoviruses, replicating vesicular stomatitis viruses with SARS-CoV-2 spike glycoproteins (VSV-SARS2) were poorly immunogenic after intramuscular administration in clinical trials. Here, by G protein trans-complementation, we generated VSV-SARS2(+G) virions with expanded target cell tropism. Compared to parental VSV-SARS2, G-supplemented viruses were orally active in virus-naive and vaccine-primed cynomolgus macaques, powerfully boosting SARS-CoV-2 neutralizing antibody titers. Clinical testing of this oral VSV-SARS2(+G) vaccine is planned.


Subject(s)
COVID-19 , Rhabdoviridae , Viral Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Liposomes , Nanoparticles , Primates , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics
17.
Vaccines (Basel) ; 10(2)2022 Feb 14.
Article in English | MEDLINE | ID: covidwho-1699506

ABSTRACT

The emergence of rapidly spreading variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a major challenge to the ability of vaccines and therapeutic antibodies to provide immunity. These variants contain mutations of specific amino acids that might impede vaccine efficacy. BriLife® (rVSV-ΔG-spike) is a newly developed SARS-CoV-2 vaccine candidate currently in phase II clinical trials. It is based on a replication-competent vesicular stomatitis virus (VSV) platform. The rVSV-ΔG-spike contains several spontaneously acquired spike mutations that correspond to SARS-CoV-2 variants' mutations. We show that human sera from BriLife® vaccinees preserve comparable neutralization titers towards alpha, gamma, and delta variants and show less than a three-fold reduction in the neutralization capacity of beta and omicron compared to the original virus. Taken together, we show that human sera from BriLife® vaccinees overall maintain a neutralizing antibody response against all tested variants. We suggest that BriLife®-acquired mutations may prove advantageous against future SARS-CoV-2 VOCs.

18.
Microbiol Res ; 258: 126993, 2022 May.
Article in English | MEDLINE | ID: covidwho-1693103

ABSTRACT

Pseudoviruses are viral particles coated with a heterologous envelope protein, which mediates the entry of pseudoviruses as efficiently as that of the live viruses possessing high pathogenicity and infectivity. Due to the deletion of the envelope protein gene and the absence of pathogenic genes, pseudoviruses have no autonomous replication ability and can infect host cells for only a single cycle. In addition, pseudoviruses have the desired characteristics of high safety, strong operability, and can be easily used to perform rapid throughput detection. Therefore, pseudoviruses are widely employed in the mechanistic investigation of viral infection, the screening and evaluation of monoclonal antibodies and antiviral drugs, and the detection of neutralizing antibody titers in serum after vaccination. In this review, we will discuss the construction of pseudoviruses based on different packaging systems, their current applications especially in the research of SARS-CoV-2, limitations, and further directions.


Subject(s)
COVID-19 , Vaccines , Antibodies, Neutralizing , Antiviral Agents/pharmacology , COVID-19/prevention & control , Humans , SARS-CoV-2
19.
Front Immunol ; 12: 788235, 2021.
Article in English | MEDLINE | ID: covidwho-1650090

ABSTRACT

The ongoing COVID-19 pandemic has resulted in global effects on human health, economic stability, and social norms. The emergence of viral variants raises concerns about the efficacy of existing vaccines and highlights the continued need for the development of efficient, fast-acting, and cost-effective vaccines. Here, we demonstrate the immunogenicity and protective efficacy of two vesicular stomatitis virus (VSV)-based vaccines encoding the SARS-CoV-2 spike protein either alone (VSV-SARS2) or in combination with the Ebola virus glycoprotein (VSV-SARS2-EBOV). Intranasally vaccinated hamsters showed an early CD8+ T cell response in the lungs and a greater antigen-specific IgG response, while intramuscularly vaccinated hamsters had an early CD4+ T cell and NK cell response. Intranasal vaccination resulted in protection within 10 days with hamsters not showing clinical signs of pneumonia when challenged with three different SARS-CoV-2 variants. This data demonstrates that VSV-based vaccines are viable single-dose, fast-acting vaccine candidates that are protective from COVID-19.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Ebolavirus/immunology , Pandemics/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination/methods , Vesicular stomatitis Indiana virus/immunology , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Cricetinae , Disease Models, Animal , Ebolavirus/genetics , Female , Humans , Immunogenicity, Vaccine , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Plasmids , Spike Glycoprotein, Coronavirus/genetics , T-Lymphocytes/immunology , Treatment Outcome , Vero Cells , Vesicular stomatitis Indiana virus/genetics
20.
Front Med (Lausanne) ; 8: 793437, 2021.
Article in English | MEDLINE | ID: covidwho-1649368

ABSTRACT

SARS-CoV-2 is an emerging coronavirus threatening human health and the economy worldwide. As an RNA virus, variants emerge during the pandemic and potentially influence the efficacy of the anti-viral drugs and vaccines. Eight spike variants harboring highly recurrent mutations were selected and introduced into a replication-competent recombinant VSV in place of the original G protein (rVSV-SARS-CoV-2). The resulting mutant viruses displayed similar growth curves in vitro as the wild-type virus and could be neutralized by sera from convalescent COVID-19 patients. Several variants, especially Beta strain, showed resistance to human neutralizing monoclonal antibodies targeting the receptor-binding domain (RBD). A single dose of rVSV-SARS-CoV-2 Beta variant could elicit enhanced and broad-spectrum neutralizing antibody responses in human ACE2 knock-in mice and golden Syrian hamsters, while other mutants generated antibody levels comparable to the wild-type. Therefore, our results will be of value to the development of next-generation vaccines and therapeutic antibodies.

SELECTION OF CITATIONS
SEARCH DETAIL